If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-13x-60=0
a = 4.9; b = -13; c = -60;
Δ = b2-4ac
Δ = -132-4·4.9·(-60)
Δ = 1345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{1345}}{2*4.9}=\frac{13-\sqrt{1345}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{1345}}{2*4.9}=\frac{13+\sqrt{1345}}{9.8} $
| 3(×+1)=7x-3 | | 8=6b+6b | | ((4)/(7))(x-3)=((5)/(3)) | | 5=z+47/4 | | q8+5=21 | | X/3+1=-x/2-3 | | 40=4+6t | | 66=10x+8 | | 28+2v=82 | | -7+-4n=13 | | 35x=63-35x | | 7.85=(3.14d) | | 9v+22=94 | | 7.85=3.14d | | 3(b+23)=96 | | 3/2=7x/4-2 | | z²-13z+24=-12 | | g+11/10=2 | | j/6+33=40 | | x-6.2=5.3 | | 5t+1=1 | | 3=q+8/10 | | 2b—38=84 | | Y=3.75x+110 | | x+6.41=9.21 | | Y=3.75x-110 | | -1/6=5/2-x/3 | | G(2)=7x-5 | | 2(y+69)=-22 | | 3x+-x=2(2x+3) | | 3(z+85)=51 | | v+1.14=6.62 |